INTECOCIS Scientific Afternoon
13 Décembre 2013

Numerical Slot Burner

Emilien Courtine

Doctorant - IMFT
Slot Burner – Numerical Setup

Experimental Set up of the Slot Burner

Numerical Mesh
Slot Burner – Numerical Setup

• Direct Numerical Simulation with very high mesh resolution:
 – Flame front: 50 microns
 – Flame anch.: 10 microns
 – Acoustic BL: 100 microns
Slot Burner - FTF

T 50°
T 90°
T 120°
Slot Burner - FTF

- Temporal signals \((T = 50 \text{ degrees})\)
 - Inlet velocity & Top velocity (almost the same)
 - Heat release
Slot Burner – Flame Anchoring

T 50°

T 90°

T 120°

Heat Release

6.504e+09
4.872e+09
3.240e+09
1.608e+09
-2.441e+07
Slot Burner – Flame Anchoring

- Comparison between
 - Experimental visualization
 - OH/CH chemiluminescence
 - Photo multiplier
 - Numerical simulation data fields
 - Iso – Heat Release
 - Iso – species (reduced chemical schemes)

- Open problem...

\[
\text{Iso-HR} = 3.0 \times 10^9 \text{ W/m}^3
\]

\[
\text{Iso-HR} = 5.0 \times 10^9 \text{ W/m}^3
\]
Slot Burner – Flame Anchoring

Temperature gradient given by AVBP

Temperature

Imposed temperature

\[T_s = 50 \]

\[T_s = 90 \]

\[T_s = 120 \]
Slot Burner – Flame Anchoring

- Pressure wiggles
Slot Burner – AVBP Fields

Grad T mean

Grad T prime

T mean

T prime max
Slot Burner – AVBP Fields

• Questions?